Конструктивные множества и их приложения

Продукти
КНИГИ
+
12,95 лв.
  • Издателство: Мир
КУПИ с регистрация ИЛИ с БЪРЗА поръчка
Моля, изберете:
Продуктът е успешно добавен в количката

Конструктивни множества и техните приложения (преводна книга от английски на руски език)

 

А. Мостовский   (автор)

 

Издателство:   Мир
Език: руски език
Раздел: Математика
Преводачи: М. И. Кратко  |  М. К. Валиев  |  Н. В. Белякин

 

Твърда корица, среден формат  |  256 стр.  |  328 гр.

(неизползвана книга в отлично състояние)

 

*

 

АННОТАЦИЯ

 

Монография выдающегося польского математи­ка Анджея Мостовского фактически представляет со­бой вторую часть уже известной читателю книги К. Куратовского и А. Мостовского «Теория множеств», переведенной на русский язык («Мир», 1970).

Она посвящена описанию исследований по аксиоматике теории множеств и содержит современные дости­жения в этой области, включая методы Коэна. Высо­кие научные и методические достоинства книги, несом­ненно, привлекут к ней внимание широкого круга ма­тематиков — от студентов до специалистов.

 

**

 

ОГЛАВЛЕНИЕ (виж изображенията под корицата)

 

***

 

ПРЕДИСЛОВИЕ

 

В первом (польском) издании книги по теории множеств, напи­санной проф. К. Куратовским и мною в 1952 г., была глава, в кото­рой излагался ряд проблем, связанных с независимостью и непро­тиворечивостью некоторых теоретико-множественных утверждений. Во втором издании нашей книги мы вынуждены были опустить эту главу. Английский перевод, появившийся в 1967 г. в серии "Studies in Logic and the Foundations of Mathematics", никакой мета­математической теории множеств не содержит.

 

Представленный здесь труд первоначально планировался как второй том упомянутой выше книги. Однако в процессе работы я убе­дился, что брать за основу изложения аксиомы типа Цермело — Френкеля, которые использовались в предыдущей книге, не совсем удобно. Особенно трудно излагать метаматематические результаты, не используя понятия класса, которого нам не требовалось в работе, посвященной «классическим» разделам теории множеств. Поэтому я воспользовался более сложной системой, в которой допускаются классы, и решил излагать результаты по теории множеств Цермело — Френкеля на основе теории классов Морса. Можно спросить, не лучше ли излагать метаматематические результаты по теории Гёделя — Бер-найса на основе той же теории или, возможно, даже на основе финит­ной математики? Я считаю, что каждый из этих подходов имеет свои преимущества и недостатки. Преимущество выбора в качестве основы изложения системы Морса заключается в том, что непротиворечи­вость теории множеств Цермело — Френкеля и существование фун­дированных моделей в этом случае доказуемо и нет необходимости принимать это в качестве гипотезы.

 

Книга не содержит почти ничего сверх теории конструктивных множеств  Гёделя и коэновского построения моделей с помощью генерических множеств. Я попытался изложить здесь две теории полностью, без всяких пробелов, которые надо было бы заполнять читателям. Из-за этого в некоторых местах встречаются длинные, хотя и нетрудные вычисления. Я думаю, что этого нельзя устранить без радикального изменения всего подхода. Возможно, что от вычи­слений можно полностью избавиться, пользуясь последними идеями Скотта и Вопенки, заменяющими коэновский «форсинг» булевознач-ными моделями, или следуя Саксу, использующему понятия теории меры. Я не пытался этого делать.

 

Книгу условно можно разделить на четыре части. В главах I — III вводится определение относительно конструктивных множеств. Они образуют подкласс универсального класса, и мною доказано, что они образуют модель теории множеств Цермело — Френкеля. В главах IV — VII рассматриваются конструктивные множества, содержащиеся в данной транзитивной модели и полученные из неко­торого элемента этой модели итерированием процесса построения столько раз, сколько ординалов содержится в модели. Исследуя эти множества, приходим к результату Гёделя о непротиворечивости обобщенной континуум-гипотезы. В главах VIII — XII излагается коэновский метод генерических множеств. Модели, которые мы полу­чаем в этой части книги, также содержат относительно конструктив­ные множества и процесс их построения итерируется столько раз, сколько и раньше, но элементы, с которых мы начинаем, теперь не являются элементами данной модели. Теория Коэна представлена в таком виде, который позволяет использовать топологию. Этот метод восходит к Рыль-Нардзевскому и Такеути. Наконец, в гла­вах XIII — XV метод Коэна применяется для доказательства неко­торых результатов о независимости.

 

Анджей Мостовский

 

* Русский перевод: К. Куратовский, А. Мостовский, Теория множеств, Мир», М., 197 0.— Прим. ред.

Характеристики
В наличност:
Да
Оригинално заглавие
Constructible Sets with Applications, North-Holland, Amsterdam. (1969)
Език
руски
Автор
А. Мостовский
Издателство
Мир
Преводач
М. И. Кратко, М. К. Валиев, Н. В. Белякин
Град
Москва
Година
1973
Страници
256
Състояние
неизползвана книга
ЗАБЕЛЕЖКА
книга в отлично състояние
Националност
полска
Корица
твърда
Формат
среден
Ширина (мм)
145
Височина (мм)
220
Дебелина (мм)
15
Тегло (гр.)
328
Отстъпки, доставка, плащане

Непотвърдена от клиента по телефона поръчка, не се обработва! (след 3 дни опити за връзка с клиента се анулира)

 

Отстъпки, доставка, плащане

При покупка на стойност:

  • Над 20 лв., отстъпка от 10%, видима в процеса на пазаруване.
  • До 60 лв. - доставка до офис на Еконт или Спиди - 5 лв.над 60 лв. - безплатна доставка
  • Доставка до адрес с Еконт или Спиди - 6.00 лв., независимо от теглото на книгите и стойността на поръчката

 

Срок за доставка до офис на  Еконт или Спиди: Поръчваш днес, получаваш утре!

 

За редовни клиенти, закупили книгите си с регистрация, се определя персонална отстъпка с код за отстъпка, за пазаруване независимо от стойността на покупката.

За пазаруващите само с "Бърза поръчка", не се предлага код за постоянна отстъпка, поради невъзможността да бъде вписан такъв.

 

 

Поръчки направени до 17.00 ч. в делничен ден - за София и страната, обикновено се изпращат в същия ден и се доставят на следващия, или според графика на куриерската фирма. При пристигането на пратката в офиса на Еконт клиентите, направили поръчка с регистрация, получават имейл и SMS, а с "Бърза поръчка" - само SMS. 

 

След преглед на пратката в присъствието на куриера, се заплаща наложен платежКъм книгите от всяка поръчка се издава фискален бон, а при заявено желание и опростена фактура, както на фирми, така и на физически лица.

Ако книгата или книгите не отговарят на описаното състояние при поръчката, то той се освобождава от заплащане на пратката в двете посоки, след разговор по телефона с подателя.

Ако клиента след преглед прецени, че книгата или книгите не са му необходими, то той следва да ги върне на подателя, като заплати пощенските разходи в двете посоки.

 

 

За София - лично предаване

 

Среща с предварителна уговорка на две места в кв. Орландовци:

1. За пристигащите с трамвай (№ 3, 4 или 18): трамвайна спирка "Католически гробищен парк" (виж на картата) около 7-9 мин от пл. Лъвов мост.

2. За пристигащите с автомобил: кв. Орландовци, ул. Железопътна 18, пред магазин Билла (виж на картата) 

Предимствата на този начин за получаване: възможност за внимателно разглеждане на книгите, получаване в същия ден и спестяване на пощенските разходи.

 

 

За чужбина (for abroad) 

 

Български пощи

 

След уточняване на всички подробности и потвърждение от страна на клиента.

Бърза поръчка Без формалности
Вашата поръчка е приета. Очаквайте обаждане!